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The formation of stable cones in electrified liquid interfaces was explained by Taylor 
as a balance between electrical and capillary tensions, where the electrostatic 
potential varies as 4 - ri with the distance r from the cone tip. Although Taylor's 
predictions for the dependence of the onset voltage for cone formation on the liquid 
surface tension y and the cone dimensions agree with observed trends, his conclusion 
that the cone semiangle a can only take the value a = aT = 49.3" does not. A more 
general theory free from this paradox is constructed for highly conducting fluids by 
accounting for the space charge of the droplets emanating from the cone apex, whose 
potential has the remarkable property of also obeying Taylor's ri law. In this 
formulation, where the apex of a conical meniscus of semiangle a emits an angularly 
uniform opposed coaxial conical spray of semiangle K - P ,  both /3 and the spray 
current I turn out to be fixed as functions of a ; namely, /3 = P(a), and I = SzyKqG(a), 
where Kq and q are the droplet's electrical mobility and total charge, respectively. In  
experiments with 5 % H,SO, in 1-octanol, the observed sprays are approximately 
conical with an apex nearly touching the meniscus tip. The measured and predicted 
P(a) relations are in reasonable agreement in the range 46' > a > 32", where the 
liquid cone is stable and the spray is visible, though the data fall clearly below the 
theoretical curve. The predicted spray current I is also in rough agreement with 
preliminary experiments. The analysis applies neither to sprays of large droplets 
with significant inertia, nor to liquid cones in vacuo. 

1. Introduction 
The formation of conical protrusions at the interface between a charged liquid 

conductor and an insulating fluid ha5 intrigued scientists for over a century. These 
liquid cones often appear shortly after the surface charge density reaches the critical 
value at  which the interface becomes unstable, a phenomenon which is relatively well 
understood for simple geometries. Rayleigh's famous criterion for the maximum 
charge qR that a droplet of radius R and coefficient of surface tension y can hold is 
(see Landau & Lifshitz 1960, Ch. 1, problem 6 ) :  

where E,, is the electrical permittivity of vacuum. For a horizontal fluid interface in 
a vertical electric field, the condition for the so-called Frenkel instability can also be 
derived analytically (Landau & Lifshitz 1960, ch. 1, problem 5). Although both 
criteria have been verified experimentally, the behaviour of the interface beyond the 
critical threshold for instability is not well understood, even though a new steady- 
state configuration with sharply conical liquid protrusions appears shortly after. 
Such cones have a remarkable universality in many of their properties and structure. 

qR = S K ( E ~  yR3)1, (1) 
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They always carry current, and their tip invariably emits a thin liquid filament or 
microjet which breaks into droplets forming a charged cloud, commonly referred to 
as an ‘electrospray ’. These menisci also remain conical through extremely wide 
changes in the dimensions of their associated microjet and spray. (The diameter of 
the emitted microjet may vary from some 100pm in hydrocarbons seeded with 
antistatic additives (Jones & Thong 1971; Gomez & Tang 1991a, b )  down to 
nanometers or atomic dimensions in the case of liquid metals (Benasayag & Sudraud 
1985).) The cones arise not only when held a t  the exit of a capillary tube or in the 
planar geometry analysed by Frenkel (see Taylor 1965, plate 1 ) .  I n  a striking in-flight 
photograph, Gomez & Tang (1992) have recently shown that the Coulombic 
explosion of a spherical droplet past the Rayleigh limit also involves the formation 
of a relatively long-lived cone that emits a stream of daughters less than 10 times 
smaller than the parent drop. 

Because multiple wandering cones form in the planar configuration, these 
structures have been studied primarily when stabilized a t  the exit of a capillary tube 
(figure l ) ,  as in Zeleny’s (1914, 1915, 1917) pioneering and still very well worth 
reading studies. Accordingly, the experimental aspects of the present work will be 
based on Zeleny ’s  particular geometry, which has the additional advantage that the 
liquid flowrate Q can be controlled externally. In  spite of this rest>riction, the basic 
features of the cones to be discussed are very likely to hold generally, independently 
of the supporting geometry. 

Aside from their theoretical and aesthetical interest, the electrosprays produced 
by charged conical menisci have inspired numerous practical applications (Bailey 
1988). In particular, the recent discovery of highly charged gas-phase ions of 
macromolecules field-evaporated from electrosprayed droplets of volatile liquids, has 
led to  a revolution in the analysis of proteins and other large biomolecules by mass 
spectrometry (see Fenn et al. 1989, or the more than hundred related extended 
abstracts appearing in the proceedings of the 1991 meeting of the American Society 
of Mass Spectrometry, Nashville, Tennessee, May 1991). Because many of these 
applications have so far been based more on inspired intuition than on firm scientific 
knowledge, an improved understanding of electrosprays would very likely bring 
significant technological progress. 

Perhaps the most interesting fluid dynamic challenge posed by electrified liquid 
cones is to  explain the origin and dynamic structure of the microjet emitted at their 
apex. There lies the key to  controlling an  atomizer capable of producing monodisperse 
droplets varying in diameter from hundreds of pm down to submicrometer and 
perhaps nanometer dimensions. Although a theory for the jet is essential to 
determine the diameter and the charge on the electrosprayed droplets, very little is 
known even on the rough scaling laws for these quantities. In  a highly idealized 
approach which assumes that the charge is carried by the jet mostly by convection 
and that Bernouilli’s law holds inside the liquid, Fernindez de la Mora et al. (1990) 
have recently shown that the radius R of the jet varies with the flow rate Q and the 
density p of the liquid as 2R - (pQ2/y)f, which agrees with all available experimental 
data in the size range from 0.1 pm up to  some 100 pm to within a factor of 2. This 
result follows also from purely dimensional considerations for a problem where 
conduction and viscosity are irrelevant and where the large disparity of geometrical 
scales makes all external characteristic lengths irrelevant. Unfortunately, although 
the semi-predictive power of this scaling law is quite useful, the physical model on 
which it is based is probably unjustifiable and its partial success cannot be viewed 
as explaining anything. 
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FIGURE 1. Conical menisci of 5% (vol) H,SO, in l-octanol (conductivity of 0.05 mho/m) supported 
on a metal capillary kept a t  6 KV and immersed in air. The needle has outer and inner diameters 
of 1.07 and 0.806 mm, respectively, and is tapered in an approximately conical fashion down to 
nearly zero thickness a t  its tip. The electrode configuration is fixed and the flow rate Q is increased 
from left to right and top to bottom. The meniscus has just lost stability a t  the smallest flow rate 
shown, a t  an angle a = 49", only slightly smaller than Taylor's aT = 49.29". 

In  spite of our present state of ignorance regarding the jet, much can still be 
learned on this problem thanks to the large separation of scales present, where the 
cone base has a diameter several orders of magnitude larger than the microjet. For 
instance, in typical experiments where the spray consists of submicron droplets, the 
jet diameter is 0.3 pm, and the cone rests on a needle 1 mm in diameter. The ratio 
of jet speed to mean speed at  the cone is thus 10'. In  a conical meniscus of SO,H, we 
have measured droplet diameters of 0.03 pm, with an associated jet diameter which 
can be estimated to be roughly half that value. The problem is therefore nearly 
hydrostatic except in a negligibly small zone around the apex, and i t  may 
accordingly be subdivided into two regions : the outer ' cone ' and an inner 'apex '. At 
the largest scale of the cone, the jet-apex zone appears as a point, speeds are 
negligible almost everywhere, and the problem is effectively hydrostatic. Because a 
clear description of the statics of electrified liquid cones is an essential prerequisite 
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for understanding the dynamics of these microjets, the present paper will consider 
exclusively this simplest outer behaviour. 

The best available theoretical description of the hydrostatics of Zelenyan menisci 
was put forward by Taylor (1964, p. 393). His analysis assumes that the cone is held 
together by a combination of electrical forces and surface tension. Because the 
electrical pressure p ,  pulling the liquid out is quadratic with the electric field E, 

p ,  = iso E 2, (2) 

while the capillary tension p 
distance r from the cone tip (a is the cone semiangle), 

ulling the liquid inwards varies inversely with the 
7 p. 

p ,  = y cot a / r ,  (3) 

it  follows from the condition of equilibrium p ,  = p ,  that E must vary as l/d times 
some function of the polar angle 8 between the position vector r and the axis of 
symmetry of the cone (8 = 0). Introducing the potential q5 such that 

E = -V$, (4) 

the only axisymmetric solution to the electrostatic problem V2$ = 0 with the 
required r dependence is 

q5 = -(2yr/s0)4F(8); F(8)  = [rnP(O)+sQ(8)], (5a, b )  

where the factor (2y/sO): has been introduced in order to make F(8)  and the arbitrary 
constants m and n dimensionless. P and Q are independent Legendre functions of 
degree t and order 0, where P denotes the standard 9, while Q is the standard 
Q; multiplied by a constant factor such that the conditions of symmetry 
Q(0) = P(x-O),  and P(0)  = Q(R) = 1 hold. Q has zero slope a t  8 = x ,  decreases 
monotonically to become - 00 logarithmically as 0 + 0, and changes sign at 8 = aT = 
49.29'. It can be obtained from the hypergeometric function F as Q(8) = F ( - 0 . 5 ;  
1.5 ; 1 ; a( 1 + cos 8)).  Also Q(8) = (2/x) [2E(m) -K(m)], where E(m) and K(m)  are the 
complete elliptic integrals given in Abramovitch & Stegun (1964, table 17.1), and 
m = :( 1 + cos 8).t Taylor used 4 rather than Q; to represent his potential, so that his 
angle was really 130.71', and the axis 8 = 0 was outside the meniscus. The more 
common convention followed here is, however, that aT = 49.29", and the origin of 
8 is in the interior of the liquid cone. 

Taylor chose as his boundary conditions that the liquid surface 8 =  a be 
equipotential and that the field be regular outside the cone. In  this particular case, 
because P is singular a t  0 = rt and analytic at  8 = 0, the regularity condition at  the 
axis on the air side (6 = x )  requires that m = 0, while the equipotentiality condition 
F ( a )  = 0 forces that &(a) = 0. Solutions are only possible for the special Taylor cone 
angle aT = 49.29" a t  which Q vanishes. Finally, the constant s in ( 5 b )  is fixed by the 
condition of mechanical equilibrium p ,  = pr  a t  8 = a, such that 

FT(8) = a)f'  (6) 

An immediate consequence of these results (advanced and confirmed experimentally 
long before by Zeleny) is that the square of the potential V, a t  which the cone first 
forms is linear with both the liquid surface tension and the diameter of the basis of 
the cone (Zeleny 1915, Equation 10 and table 1 ; Shorey & Michelson 1970; Smith 
1986). This scaling law follows from Taylor's analysis even when the meniscus is not 

-/ Notice, an error in the argument m = [$( 1 + COY O)] ;  given by Abramovitch C Stegun (1964) in 
their equation (8.13) relating P to the elliptic integrals E and K. 
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FIGURE 2. Liquid cone angle versus flow rate as measured from photographs similar to those in 
figure 1, for the same liquid and needle. The capillary tube is held at 3715 V, perpendicularly to a 
plane grounded electrode 7 mm away from its tip. 

conical down to its basis, provided it is equipotential and gravitational effects are 
small. Indeed, in this case, and for geometrically similar electrode configurations, the 
meniscus shape at the onset voltage V, must be independent of y and the diameter 
D of the supporting tube. The electrostatic problem may thus be solved as 
q5 = K H ( O ) ,  r /D) ,  in terms of a function H(O,r/D) independent of the liquid 
properties. Near the apex the meniscus is conical, and H must tend to F(O) ( r /D) i ,  
which, compared with (5a) shows immediately that V,Z - yD/e,. 

A second experimental confirmation of Taylor's results is that angles quite close to 
his aT have actually been observed (see, for instance, Taylor 1964). However, highly 
and moderately conducting liquids in air also exhibit cone angles smaller than aT, as 
illustrated in figures 1 and 2. The photographs in figure 1 record how, upon 
decreasing the liquid flow rate Q pushed through the jet, one sees an increasing value 
of a until the cone eventually loses stability. In  the particular case shown in figure 
1 ,  the smallest flow rate leading to a stable cone was slightly smaller than the value 
corresponding to the middle top photograph, with an angle a of 48.5", fairly close to 
aT. a is 49" for the top left photograph, taken just after the cone became unstable. 
These close quantitative coincidences provide compelling evidence that Taylor's 
description must contain some fundamental essence of the real cones. 

Our present objective is to show that some of the paradoxes arising from Taylor's 
ideas may be overcome with slight modifications which preserve his qi - ri law. In 
particular, for the case of highly conducting liquids, the charged spray streaming 
from the apex will be seen to provide a simple explanation of the observed varying 
cone angles, and will additionally relate the magnitude of the emitted electrical 
current to the cone geometry and the mobility of the droplets. 

2. Effect of the charge emitted from the cone tip 
An explanation of the paradoxical observation of cone angles 01 substantially 

smaller than aT may be based on the fact that the emitted spray is charged. It could 
thus modify the electrical potential due exclusively to the charges on the cone 
surface, the only ones accounted for in Taylor's formula (6). The magnitude of the 
contribution of the charged droplets to the overall field can be assessed by direct 
visual observation of the spray boundary, a t  least when the droplets are small 
enough for their trajectories to follow closely the electrical lines of force. In the 
absence of free charges all field lines would originate at  the conical meniscus, and the 
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FIQURE 3. Conical menisci and sprays for the same conditions as figure 2. From left to right and 
top to bottom, the liquid flow rates Q in nl/s are 1.5; 2.0; 2.75; 4.0; 5.1; 6.8; 8.1; 9.7 and 10.9. 
Notice the initially conical shape of the spray whose apex nearly coincides with the liquid point. 

E,  component of the field in the vicinity of the negative half-axis (8 = 7c) would be 
positive, pointing towards the axis. Yet, as shown in figure 3, the spray droplets can 
have trajectories diverging from the negative semiaxis with half-angles as large as 
40°, even sufficiently close to the liquid cone apex for the field to be negligibly 
affected by the disposition of the ground electrodes. This behaviour implies that the 
local value of E ,  is null or negative, which can only result from the space charge from 
neighbouring droplets closer to the axis. Because the observed angles of divergence 
are of order one, the amount of charge around the negative semiaxis leading to them 
must be comparable to the charge on the cone surface. Accordingly, the space charge 
effect of the spray on the overall field is not negligible and must be accounted for. The 
question is how to do so in a form compatible with Taylor’s q5 - ri law. 

The only way in which the space charge surrounding the negative semiaxis can 
be incorporated within Taylor’s analysis is by relaxing his boundary condition 
$(n) + 00 to retain the Legendre function P in (5b) .  This new freedom amounts 
physically to allowing a line of charge singularity at the semiaxis 8 = n, with a charge 
density dq/dr per unit axial length proportional to ri. How such an arrangement of 
charge might actually come about will be discussed subsequently. However, one can 
readily see that retaining the function P in (5b)  leads to  the right effect on the cone 
angle, allowing values of a different from and strictly smaller than Taylor’s. Indeed, 
for every conceivable value of a one may choose the ratio m/s in (5b )  as 

such that the half-cone 8 = a is actually an equipotential surface. In addition, the 
ratio m/s must be positive because the liquid tip emits charge of its own polarity. But 
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FIGURE 4. Schematic view of the conical spray model, showing the meniscus angle a, the spray 
angle p and the coordinates r ,  0. 

then, in order for the ratio &(a)/P(a)  to be negative, a must be either smaller than 
aT or larger than x - a T ,  implying that only angles smaller than Taylor’s are 
acceptable, in agreement with observations (figures 1 and 2). 

Having introduced the function P(0)  in ( 5 b ) ,  one must now justify physically the 
presence of its associated charge singularity along the negative semiaxis. A first line 
of reasoning could be the following : experiments often show that the liquid extends 
past the conical region into a thin charged filament occupying the semiaxis 0 = 7c. 
Because this microjet is a fair approximation for a line of charge singularities at the 
negative semiaxis, the latter becomes physically acceptable, and may in fact seem to 
constitute an essential feature of the actual problem. Unfortunately, however, P(0)  
is associated with a charge density dq/dr varying as ri, while the reasons why the 
charge would so distribute itself along the jet length are not a t  all obvious. Even if 
a future fluid dynamic description of the jet were to succeed at justifying this special 
charge arrangement, it would most likely produce a complex coupling between the 
structure of the cone and that of the tip region, while the observed universality of the 
former seems to indicate that this coupling is in fact rather simple. For this reason, 
and for lack of a more satisfactory approach, we will proceed differently. In  this 
paper, the presence of the peculiar type of charge distribution associated with the 
function P(0)  will be justified physically by the remarkable coincidence that the 
spherical expansion of a cloud of identical charged particles propelled through a 
carrier gas by their own space charge field leads to an electrical potential varying like 
Taylor’s as qi - ri. Thus, ignoring the jet structure and assuming that the cone emits 
a stream of identical droplets with angular uniformity within the conical region 
p < 0 < x, as sketched in figure 4, the problem admits a rather simple completely 
self-consistent analytical solution which is compatible with Taylor’s extended 
potential ( 5 )  in the region a < 0 < p. 

The structure of the paper is the following. Because the charge emitted at  the cone 
tip affects the whole problem, the conical model for the spray will be presented first 
in $3. Section 4 closes the problem for the particular limit of liquids with very high 
conductivity. The paper ends in $5  with a general discussion comparing the 
predictions of this model with experiments. 

3. A conical model for the spray structure 
Consider the idealized model of the spray sketched in figure 4. 
(i) The apex of a conical meniscus of semiangle a emits an angularly uniform 

opposed coaxial conical spray of identical droplets, with angular uniformity within 
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the spherical sector rt 3 8 3 ,%, while there is no spray in the region a < 8 < /3. 
Accordingly, the electrical potential $ is harmonic in the region a < 0 < /3, where i t  
is given by ( 5 ) .  Within the spray region x 3 8 3 /3, $ satisfies Poisson’s equation: 

v=$ = - nq/co, (8) 

where q is the charge on each of the droplets, whose number density n 
the continuity equation 

in which the droplets have been assumed to have negligible inertia and diffusivity, 
so that their velocity u is linear with the field through a proportionality coefficient 
Kq, the electrical mobility, 

obeys 

V -  (nV$) = 0, (9) 

u = -KqV$.  (10) 

(ii) The boundary conditions for $ follow from the requirement that the electric 
field in the spray matches with Taylor’s extended solution ( 5 )  a t  8 = ,%, where 4 must 
be continuous and the spray boundary is a droplet streamline (E ,  = 0): 

$ = -(2yr/eo)4F(/3) and a$/a8 = 0 for all r at  8 =/3, (11)  

where F(/3) is the combination ( 5 b )  of Legendre functions particularized a t  8 = /3, 
which can be treated as a constant in the present setting. The initial conditions for 
n as r + 0 have already been fixed in the assumption that n is independent of 8 within 
the spray, and null elsewhere. 

The assumption that all the droplets have the same charge q,  diameter d,, and 
electrical mobility Kq is approximately justified as a consequence of the natural 
tendency of a jet to break up periodically into similar fragments. All these quantities 
will furthermore be taken to remain constant within the spray region (no significant 
evaporation). 

I n  the spherically symmetric case, (9) can be integrated once, and (8) then leads 
to a second-order linear ordinary differential equation for (dq5/dr)2, whose general 
solution is the sum of two terms proportional to l / r  and r-4, respectively. The 
potential within the spray thus has the remarkable property of being compatible 
with Taylor’s one-half power law, admitting the following &independent solution in 
the region /3 < 8 < r t :  

$ = -  a(2yr/co)t (12a) 

np = 3a(yc0/8)tr-z, (12b) 

where the positive dimensionless constant a is given by 

a2 = u/ (3yQKq), 

and I is the total spray current emitted through the solid angle Q = 2rt(l +cosP). 
I n  conclusion, the generalization ( 5 b )  of Taylor’s theory allowing cone angles 

smaller than aT can be justified physically on the basis of the present model, where 
the required charge singularity in the region near 8 = rt is spread over a conical spray. 
Of course, one would still have to explain how the droplets would distribute 
themselves with angular uniformity after the breakup of the liquid jet. However, 
even if this were not the case initially, i t  is plausible that the system would then tend 
t o  naturally smooth out the charge, as regions depleted of it would have a lower 
electrical potential and would thus tend to be filled. 

Notice that, because the only physical quantity available with dimensions of 4r-i 
is (2y/s0) t ,  the dimensionless constant a defined in (12a) must be of order one. 
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Accordingly, (13) shows that the total current I transmitted by the spray is of the 
order of yKq. 

The boundary conditions ( 1  1 )  matching the free-space electrical potential (5) in the 
region a c 8 c ,8 to its homologous function (12 a) in the spray region ,8 c 6 c 7c may 
now be written as 

F(P) = mP'(P) + S & ' ( P )  = 0, 

F(P) = W P )  + S & ( P )  = a. 

(14a) 
(14b) 

4. Closure of the problem for an infinitely conducting liquid 
In order to proceed further one must consider the constraints on q5 at the interface 

8 = a. This cannot yet be done in general, because there is no reliable theory for the 
mechanism of conduction through the meniscus. In particular, experimental evidence 
discussed at the end of the paper seems to indicate that the liquid is not equipotential 
when its conductivity is below the range of mho/m. However, for liquids with 
conductivities of 0.03 mho/m or higher, for which our description of the conical 
spray seems to hold, the evidence available from measurements of the spray current 
I versus the needle potential V suggests strongly that the liquid cone is in fact nearly 
equipotential. For mixtures of x% H,SO, in l-octanol, 1 is nearly independent of V 
when x 2 0.3 %, even though the spray and the meniscus geometries vary extensively 
with V.  For x c 0.02 %, however, I exhibits a relative variation of 50 % or larger over 
the range of voltages within which the conical meniscus is stable. On the other hand, 
that the cone must be nearly equipotential when I is independent of V (but not 
otherwise) can be argued as follows: because there is an important voltage drop 
through the spray (equation (12a)), the mechanism limiting the current cannot be 
within the spray, since I would otherwise depend substantially on V.  The current is 
therefore controlled within the meniscus by a certain process which cannot be purely 
resistive because I would otherwise depend on V.  But if the liquid is a good conductor 
and the current limiting mechanism is not purely resistive, it is difficult to imagine 
what process could possibly lead to a potential drop along the liquid surface. 
Accordingly, the meniscus must be nearly equipotential, at  least in the case of 
sufficiently conductive liquids. Here we shall confine our attention to this special 
circumstance, with the warning that there might be other regimes also leading to the 
formation of conical menisci. The boundary conditions at 8 = a are therefore exactly 
those of Taylor: 

P(a)  = 0 (15a) 

~ ( a )  = (tanal-t, (15b) 
the latter being the condition of mechanical equilibrium &, E2 = y cotan a/r .  F(8)  is 
thus fixed as 

F(6)  = (sin 2a)t[P(a) Q ( @  -Q(a)P(e) l / (cv '2) ,  (16) 
where use has been made of the fact that the function C associated to the Wronskian 
C/sina is a constant for Legendre's functions. For the case when P and Q are 
normalized such that P(0)  = &(IT) = 1 ,  C takes the value 

C = sina[P(a) &'(a) - &(a)P'(a)] = 0.63662. 

Equations (14a) and (15a) can be combined to fix the angle P of the spray boundary 
in terms of a, as shown in figure 5, independently of any external parameters as 

& ' ( N P ' ( P )  = &(a)/P(a). (17) 



570 J .  Fernandez de la Mora 

0 20 40 60 80 100 120140 
x - P (deg-1 

FIGURE 5. Theoretical meniscus angle a versus spray angle K - p for an infinitely conducting liquid, 
as given by (17). Open data points are from figure 3; filled data points are for several liquids and 
conditions, including 5% H,SO,-1-ortanol and methanol-glycerine mixtures seeded with HCI. 

' lo 20 30 40 50 
a (deg.) 

FIGURE 6. Theoretical dimensionless spray current as a function of meniscus angle for an 
infinitely conducting liquid, as given by (18). 

a(deg.) IT -P(deg. ) 

49.06 5 
48.41 10 
47.36 15 
45.99 20 
44.32 25 
42.42 30 
40.31 35 

G(a) 
0.00255 
0.00995 
0.021 74 
0.03751 
0.05690 
0.07962 
0.105 3 

a'(@) a(deg.) rr-P(deg.) C(a)  4 a )  
0.893 38.05 40 0.1338 0.762 
0.873 35.65 45 0.1647 0.750 
0.850 33.16 50 0.1975 0.737 
0.829 30.60 55 0.2318 0.725 
0.810 28.00 60 0.2671 0.712 
0.792 25.37 65 0.3028 0.699 
0.776 

TABLE 1. Predicted values of the spray angle b, the dimensionless current G and the dimensionless 
current per unit solid angle as functions of the liquid cone angle a, according to (17) and (18) 

Finally, (13), ( 1 4 b )  and ( 16) fix the spray current as a function of either a or /3 as 

1/(27cyKp) = 3 sin 2a[ 1 + cosP(a)]{P(a) &[P(a)] - &(a) P[P(a)1I2/(8C2) = G(a) ,  (18) 

where /3 is now interpreted not as an independent parameter but as a function of a, 
/3 = /3(a) as given from (17). The function G ( a )  or dimensionless current is shown in 
figure 6, and tabulated together with P(a) in table 1 .  Also shown in this table is a2(a), 
the only geometry-dependent parameter affecting the electric and density fields (12) 
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within the spray. Notice from (13) that a2 is a measure of the spray current per unit 
solid angle SZ. The fact that a varies only slightly over the whole range of permissible 
geometries implies that the meniscus can adjust itself to emit a current of droplets 
with a certain mobility by the simple mechanism of varying the spray angle p. 

5. Discussion 
Although the sprays shown in figure 3 conform reasonably well to the assumed 

conical geometry, we could find no experimental observations on which to justify 
such a choice when the model of $ 3  was first developed. Rather, what one generally 
sees in electrosprays is a jet, typically longer than the cone, which breaks up into a 
train of droplets that remain aligned for a comparable distance before opening up 
into a sharply defined cloud. The spray boundary thus has the appearance of a 
parabola emerging from the apex with zero slope. However, this description is not 
universally valid, being characteristic of readily visible sprays of droplets with 
diameters larger than several microns. By using progressively more-conducting 
liquids and smaller flow rates, one finds that the transitional structure between the 
meniscus and the spray shrinks monotonically, becoming much smaller than the cone 
length (as in figure 3) for droplets somewhat smaller than 1 pm. In this limit, the 
spray has the appearance of a cone whose apex nearly coincides with the tip of the 
meniscus. The probable reason why this rather simple structure has not been 
reported before is that the range of conditions where it is easily observable is quite 
restricted, as the droplets must be larger than 0.2 pm or so for the spray to be visible, 
but must be small enough for the apices of the two cones to nearly touch each other. 
As seen in the series of photographs in figure 3, the spray becomes first decreasingly 
discernible, and then invisible as the liquid flow rate is reduced. Yet the droplets are 
still there, as witnessed by the continuous variation of the spray current and the 
meniscus angle. 

Our first observation of such conical sprays was during the visit of Professor 
Barrero to Yale in August 1991, while he investigated mixtures of 20% (volume 
fraction) glycerine in methanol doped with 0.03% HC1. After this, we have seen 
numerous other fairly conical sprays of submicron droplets in different liquids, 
including the case of 5 %  volume fraction of H,SO, in l-octanol (electrical 
conductivity near 0.05 mho/m) photographed in figure 3. The corresponding droplets 
have the advantage of being initially far less volatile than in the methanol-glycerine 
mixture and thus meet some of the assumptions of the model better. All the sprays 
shown in figure 3 seem to have a short initial structure associated probably with a 
narrow filament which persist unbroken for many jet diameters, and oscillates gently 
for a substantial fraction of its length (Gomez & Tang 1991a, b ;  Thong & Weinberg 
1971, figure 5a) .  For fixed values of the metal capillary voltage (3715V) and the 
geometry (see caption to figure 1 -the needle is 7 mm away from an effectively 
infinite grounded plane oriented normally to its axis), upon increasing the rate Q at 
which the liquid is injected into the meniscus, the spray angle can be clearly seen to 
increase while the liquid cone angle decreases, approximately as predicted. A t  large 
flow rates the meniscus becomes elongated and eventually loses stability, so that the 
smallest angle a observed is somewhat larger than 30'. The phenomenon precluding 
smaller values is unknown. 

Testing the validity of the predicted a(j) curve is not straightforward because the 
spray boundary is curved outwards, and its apex region is not as well defined as 
the liquid cone apex and so does not permit a precise extrapolation of the slope as 
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r+O. However, with errors of several degrees for /3 and If: 1" for a,  we have extracted 
values of both angles from several photographs, as shown by the symbols in figure 
5.  Although the measured points fall clearly below the predicted line, the general 
agreement is surprisingly good considering the drastic nature of some of the model 
assumptions. 

A rough experimental test of equation (18) for the predicted spray current can also 
be attempted. For a = 40°, as in a typical experimental situation, the dimensionless 
current G is near 0.1. Assuming y = 35 dyn/cm, taking the medium to be air at 
standard conditions and the droplets to be charged at  half of the Rayleigh limit 
(equation ( l ) ,  and using for the drag coefficient of the droplets the formula given by 
Friedlander (1977), we compute the following currents I as a function of particle 
diameter dp, which are in rough agreement with typically observed values : 

d, (pm) 0.5 0.2 0.1 0.05 0.02 
I (pA)  0.27 0.24 0.26 0.32 0.47 

This current has a minimum in the range of 0.2 pm, as a consequence of the fact that 
qR - 4, while K varies as l/d, for particles in the continuum regime, and as dp2 in 
the free-molecule regime. The predicted trend of currents increasing with decreasing 
diameters for very small droplets can easily be observed when using liquids with high 
conductivities, which produce very small droplets (Smith 1986). 

For a more quantitative test one needs to know the group Kq. Although there are 
no such published data, Mr Rosell-Llompart has measured the electrical mobility 
and the diameter of the 20 % involatile residue from a liquid consisting originally of 
20 % glycerine, 25 % methanol and 55 YO water seeded with small amounts of NaC1. 
His measurement technique is similar to that reported by Fernandez de la Mora 
et al. (1990), which actually determines the distribution of mobilities and confirms 
the assumption made that most particles have approximately the same mobility. The 
data for the evaporated droplets are Kq = 0.307 cm2 V-l s-l; d, = 0.17 pm (0.29 pm 
before drying), which implies that, before evaporation, the droplet charge was 0.57 
times the Rayleigh limit. (Note that no coulombic explosions arise during 
evaporation because glycerine has a substantially larger surface tension than the 
original liquid.) The calculated current (G = 0.1) is 0.31 pA, not too far from the 
measured value of 0.23 pA. In  spite of the imperfect nature of this comparison, where 
we do not know a well enough to assign G(a) with less than a 30% error, the 
agreement is certainly better than qualitative. 

Several other qualitative checks of the theory may be made. For instance, when 
decreasing the liquid flow rate at a given voltage, the current decreases by a factor 
of three or more in the whole interval within which the cone is stable. Yet the droplet 
mobility varies far less within this range, so that this reduction in current must be 
associated mostly with variations in the cone angle, in qualitative agreement with 
figure 6, where G+O as a+aT (remember that the cone angle actually approaches 
Taylor's angle at diminishing flow rates). 

In conclusion, the fragmentary experimental evidence available makes it very 
likely that space charge plays an important role in this problem, setting strong 
constraints on the relation among the meniscus angle the droplet mobility and the 
emitted current, Our model of an angle-independent spray density is probably just 
an approximation, perhaps valid asymptotically far from the apex ; but it seems to 
provide a fair first-order description of charge emission from electrified liquid cones 
immersed in dielectric fluids. A theory for the jet structure is still pending, and 
without it one cannot know the droplet mobility and charge. 
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Notice finally that, even within the region of the cone far from the apex where the 
hydrostatic assumption holds, the hypothesis that the liquid surface is equipotential 
is still questionable, at least for liquids less conducting than those used here. In  this 
case, some (conductive 1 )  mechanism different from space charge in the spray must 
be responsible for the observed cone angles smaller than Taylor's. Indeed, in 
mixtures of 0.01 % H,SO, in l-octanol, intact jets far longer than the liquid cone can 
be easily seen. Because these jets move much faster than the free droplets one would 
then expect small space-charge effects and a meniscus angle close to aT. Yet, 
although the liquid protrusion is sharply conical, one seen angles as small as 39". The 
paradox addressed in this paper thus remains unsolved except for highly conducting 
liquids. 

Craig Whitehouse (Analytica, Branford, Connecticut) first pointed out to me that 
space charge was important in electrosprays. Professor A. Barrero found the 
experimental conditions required to save this analysis from oblivion. Mr J. Rosell- 
Llompart made key quantitative measurement on droplet size and mobility 
distributions. Constant discussions with Professors J. B. Fenn and A. Gomez ; Mr 
Rosell and Mr I. G. Loscertales (Yale) ; and Professors Barrero and R. FernBndez- 
Feria (Seville) have been most stimulating. To all of them I am greatly indebted. 
This work has been supported by the US National Science Foundation Grant 
numbers CBT-88 12070, CTS-9106619 and CTS-9112601 at Yale. Our collaboration 
with the University of Seville was supported by the Spanish CICYT Coordinated 
Grant PB-89-195, and that with Analytica of Branford by the US Army Research 
Office Grant DAAL03-88-C-0008. 
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